On the Comparison of Positive Elements of a C*-algebra by Lower Semicontinuous Traces
نویسنده
چکیده
It is shown in this paper that two positive elements of a C*algebra agree on all lower semicontinuous traces if and only if they are equivalent in the sense of Cuntz and Pedersen. A similar result is also obtained in the more general case where the two elements are comparable by their values on the lower semicontinuous traces. This result is used to give a characterization of the functions on the cone of lower semicontinuous traces of a stable C*-algebra that arise from positive elements of the algebra.
منابع مشابه
The Cone of Lower Semicontinuous Traces on a C*-algebra
The cone of lower semicontinuous traces is studied with a view to its use as an invariant. Its properties include compactness, Hausdorffness, and continuity with respect to inductive limits. A suitable notion of dual cone is given. The cone of lower semicontinuous 2-quasitraces on a (non-exact) C*-algebra is considered as well. These results are applied to the study of the Cuntz semigroup. It i...
متن کاملOn the Cones of Lower Semicontinuous Traces and 2-quasitraces of a C*-algebra
The basic properties of the cones of lower semicontinuous traces and 2-quasitraces are studied. These properties include: compactness and Hausdorffness of the given cone, continuity of the corresponding functor, and a suitable notion of dual space. These results are applied to the study of the Cuntz semigroup of some classes of C*-algebras. It is shown that if a C*-algebra absorbs the Jiang-Su ...
متن کاملStability in the Cuntz Semigroup of a Commutative C-algebra
Let A be a C-algebra. The Cuntz semigroup W (A) is an analogue for positive elements of the semigroup V (A) of Murray-von Neumann equivalence classes of projections in matrices over A. We prove stability theorems for the Cuntz semigroup of a commutative C-algebra which are analogues of classical stability theorems for topological vector bundles over compact Hausdorff spaces. Let SDG denote the ...
متن کاملC*-Algebra numerical range of quadratic elements
It is shown that the result of Tso-Wu on the elliptical shape of the numerical range of quadratic operators holds also for the C*-algebra numerical range.
متن کاملPositive-additive functional equations in non-Archimedean $C^*$-algebras
Hensel [K. Hensel, Deutsch. Math. Verein, {6} (1897), 83-88.] discovered the $p$-adic number as a number theoretical analogue of power series in complex analysis. Fix a prime number $p$. for any nonzero rational number $x$, there exists a unique integer $n_x inmathbb{Z}$ such that $x = frac{a}{b}p^{n_x}$, where $a$ and $b$ are integers not divisible by $p$. Then $|x...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008